Nonexistence of positive solutions for 2pth order integro-differential inequalities
نویسندگان
چکیده
منابع مشابه
Triple positive solutions of nth order impulsive integro-differential equations
In this paper, we prove the existence of at least three positive solutions of boundary value problems for nth order nonlinear impulsive integrodifferential equations of mixed type on infinite interval with infinite number of impulsive times. Our results are obtained by applying a new fixed point theorem introduced by Avery and Peterson.
متن کاملPositive Solutions of Volterra Integro–differential Equations
We present some sufficient conditions such that Eq. (1) only has solutions with zero points in (0,∞). Moreover, we also obtain some conditions such that Eq. (1) has a positive solution on [0,+∞). The motivation of this work comes from the work of Ladas, Philos and Sficas [5]. They discussed the oscillation behavior of Eq. (1) when P (t, s) = P (t− s) and g(t) = t. They obtained a necessary and ...
متن کاملSecond-Order Elliptic Integro-Differential Equations: Viscosity Solutions' Theory Revisited
The aim of this work is to revisit viscosity solutions’ theory for second-order elliptic integrodifferential equations and to provide a general framework which takes into account solutions with arbitrary growth at infinity. Our main contribution is a new Jensen-Ishii’s Lemma for integro-differential equations, which is stated for solutions with no restriction on their growth at infinity. The pr...
متن کاملExtremal Positive Solutions For The Distributed Order Fractional Hybrid Differential Equations
In this article, we prove the existence of extremal positive solution for the distributed order fractional hybrid differential equation$$int_{0}^{1}b(q)D^{q}[frac{x(t)}{f(t,x(t))}]dq=g(t,x(t)),$$using a fixed point theorem in the Banach algebras. This proof is given in two cases of the continuous and discontinuous function $g$, under the generalized Lipschitz and Caratheodory conditions.
متن کاملExistence and nonexistence of positive solution for sixth-order boundary value problems
In this paper, we formulate the sixth-order boundary value problem as Fredholm integral equation by finding Green's function and obtain the sufficient conditions for existence and multiplicity of positive solution for this problem. Also nonexistence results are obtained. An example is given to illustrate the results of paper.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 1997
ISSN: 0893-9659
DOI: 10.1016/s0893-9659(97)00106-7